วันพุธที่ 15 กรกฎาคม พ.ศ. 2552

ปิโตรเลียม

กำเนิดปิโตรเลียม

นักโบราณคดีเชื่อ ว่าประมาณ 2,500 ปีก่อนคริสตกาล พวกชนเผ่าบาบิโลเนียน (Babylonian) เริ่มใช้น้ำมัน (ปิโตรเลียม) เป็นเชื้อเพลิงแทนไม้และเมื่อประมาณ 1,000 ปีก่อนคริสตกาล ชาวจีนเป็นชาติแรกที่ทำเหมืองถ่านหินและขุดเจาะบ่อก๊าซธรรมชาติลึกเป็นร้อย เมตรได้ก่อนใครน้ำมันประกอบด้วยสารประกอบไฮโดรคาร์บอนชนิดต่าง ๆ หลายชนิดมากมายจนมีคำพูดว่าไม่มีน้ำมันจากบ่อไหนเลยในโลกที่มีการผสมผสาน ส่วนประกอบได้คล้ายกัน แต่จะเห็นว่าส่วนประกอบกว้าง ๆ คล้ายกัน ซึ่งตรงกันข้ามกับก๊าซธรรมชาติที่ประกอบด้วยก๊าซที่สำคัญคือ มีเทน (Methane) เป็นหลักที่เหลือซึ่งมีปริมาณน้อยกว่าได้แก่ อีเทน (Ethane) โปรเพน (Propane) และบิวเทน (Buthane) ปิโตรเลียมจัดได้ว่าเป็นผลิตภัณฑ์ทางธรรมชาติที่ได้จากการสลายตัวของสิ่งมี ชีวิตทั้งพืชและสัตว์รวมกันปฏิกิริยาเคมีเกิดขึ้นเรื่อย ๆ ในน้ำมันดิบที่เคลื่อนตัวเข้ามาก่อนถึงโครงสร้างกักเก็บเป็นเวลายาวนานหลาย ล้านปีซึ่งอาจะเป็นเหตุผลที่อธิบายได้ว่าทำไมน้ำมันจากบ่อต่าง ๆ จึงไม่เหมือนกันตะกอนที่ปนอินทรีย์วัตถุหรือที่จะให้น้ำมันสะสมตัวอยู่ในปัจจุบันนี้คือ ตะกอนที่มีแร่ดินเหนียวอยู่ด้วยมากขณะที่กักเก็บน้ำมันจริง ๆ คือ หินทรายซึงประกอบด้วยแร่เขี้ยวหนุมานเป็นส่วนใหญ่หรือไม่ก็เป็นหินปูนที่มี แร่แคลไซต์มากหรือพวกหินที่มีรอยแตกมากมาย จึงดูเหมือนว่าน้ำมันเกิดอยู่ที่หนึ่งและต่อมาจึงเปลี่ยนเคลื่อนย้ายไปสะสม ตัวอยู่อีกที่ซึ่งความจริงการเคลื่อนย้ายตัวของน้ำมันก็มีหลักการคล้าย ๆ กับการเคลื่อนย้ายของน้ำใต้ดินหินทรายที่มีความสามารถยอมให้ของเหลวไหลผ่าน สูงกว่าหินดินดานมากขึงยอมให้น้ำมันผ่านเข้ามาได้และที่สำคัญคือ แรงยึดเหนี่ยวระหว่างน้ำมันกับแร่เขี้ยวหนุมานหรือแร่แคลไซต์มีน้อยกว่าน้ำ กับแร่ดังกล่าว น้ำมันจึงผ่านไปได้แต่น้ำยังคงยึดเกาะอยู่ น้ำยึดเกาะข้างเม็ดแร่อย่างมากส่วนน้ำมันอยู่ตรงกลางช่องว่างโดยไม่ยอมผสม กันและเบากว่าน้ำมาก ดังนั้นน้ำมันจึงลอยสูงขึ้นมาเจอแหล่งกักเก็บและสะสมตัวอยู่ได้เหนือน้ำใต้ ดินและโอกาสที่จะสะสมอยู่ได้ในตะกอนมีเพียง 0.1% ของน้ำมันที่เกิดมา จึงไม่แปลกใจเลยที่พบน้ำมันอยู่ได้มากกว่า 60% ของปริมาณน้ำมันทั้งหมดจากหินตะกอนยุคใหม่ไม่เกิน 2.5 ล้านปีเป็นส่วนใหญ่คือมหายุคนวชีวิน (Cenozoic) ประเทศไทยเราก็เช่นกัน น้ำมันทั้งหมดเกิดอยู่ในหินยุคใหม่ ๆ ทั้งนั้น จากการขุดเจาะน้ำมันพบว่ายิ่งเจาะลึกมากเท่าใด โอกาสที่จะพบน้ำมันก็น้อยลงเท่านั้น ที่เป็นเช่นนี้อาจเป็นเพราะหินยิ่งลึกมากความพรุนยิ่งน้อยลง อัดตัวกันมากขึ้นและเกิดแรงดันใหม่น้ำมันเคลื่อนไปข้างบนได้มาก


ปริมาณคิดเป็นร้อยละของน้ำมันทั่วโลกที่พบในที่หินกักเก็บที่สำคัญ ซึ่งหินทรายเป็นหินกักเก็บได้ดีกว่าหินปูน
แหล่งกำเนิดปิโตรเลียมน้ำมันและก๊าซธรรมชาติมีสถานะเป็นของเหลวและก๊าซและเบากว่าน้ำ น้ำมันผลิตได้จากบ่อน้ำมัน (oil pools) ซึ่งหมายถึงแหล่งสะสมน้ำมันและก๊าซธรรมชาติใต้ดินในแหล่งกักเก็บที่มีตัวปิดกั้นทางธรณีวิทยา บ่อน้ำมันจึงอาจเป็นคำพูดที่ใช้ผิดๆ จริงๆ แล้วไม่ใช่เป็นทะเลสาปที่มีน้ำมันแต่หมายถึง ส่วนของหินที่มีน้ำมันบรรจุอยู่เต็มช่องว่างในหินนั้น ดังนั้นบ่อน้ำมันหลายๆ บ่อที่มีลักษณะ-โครงสร้างของการกักเก็บคล้ายๆ กันหรือบ่อเดียวโดยๆ แยกจากบ่ออื่นที่ไหลออกไปอาจเรียกรวมๆ กันว่า แหล่งน้ำมัน (oil field) แหล่งน้ำมันจึงอาจประกอบด้วยบ่อที่อยู่เรียงๆ กันไปอยู่ข้างๆ กันหรืออยู่บนล่างตามแนวดิ่งก็ได้

ปัจจุบันปัจจัยควบคุมการสะสมน้ำมันมีอยู่ด้วยกัน 5 ประการด้วยกัน
คือ ต้องมีหินที่ทำหน้าที่ให้น้ำมันมายึดเกาะอยู่ได้เรียกว่า หินอุ้มน้ำมันหรือหินกักเก็บ (reservoir rock) ซึ่งมีคุณสมบัติเดิมคือ ต้องมีรูพรุนมากพอที่จะให้น้ำมันไหลผ่านได้ หินกักเก็บจะต้องถูกปิดทับด้วยชั้นหิที่ไม่ยอมให้น้ำมันไหลซึมออกไปซึ่งเรียกว่า หินปิดกั้น (roof rock) เช่นหินดินดาน ทำให้น้ำมันลอยตัวอยู่เหนือน้ำบาดาลโดยไม่หนีหายไป ทั้งหินกักเก็บและหินปิดกั้นจะประกอบขึ้นมาเป็นโครงสร้างหรือรูปแบบการกักเก็บน้ำมัน (trap หรือ trap rock) ในแบบต่างๆ กัน ในการกักเก็บที่ดีขนาดไหนก็ไม่ได้รับประกันว่าจะมีน้ำมันได้ถ้าไม่มีหินที่เป็นต้นกำเนิดน้ำมันที่เรียกว่า หินกำเนิด (source rock) ถ้าจะมีการเกิดการเสียรูปโครงสร้าง (structural deformation) เมื่อสร้างรูปแบบการกักเก็บก็ต้องเกิดขึ้นก่อนที่น้ำมันจะหลบหนีออกจากหินกักเก็บจนหมด

ปิโตรเลียม (petroleum จากภาษากรีก petra – หิน และ elaion – น้ำมัน หรือภาษาละติน oleum – น้ำมัน ) หรือน้ำมันดิบ บางครั้งเรียกอย่างไม่เป็นทางการว่า ทองคำสีดำ หรือ "น้ำชาเท็กซัส" คือของเหลวขุ่นข้นสีน้ำตาลเข้มหรือเขียวเข้มปิโตรเลียม เป็นทรัพยากรธรรรมชาติที่สามารถพบได้ในชั้นหินในบางพื้นที่บนเปลือกโลกและประกอบไปด้วยสารประกอบโครงสร้างซับซ้อนของไฮโดรคาร์บอน โดยส่วนมากมักจะเป็นอัลเคนแต่อาจจะแพร่หลายในรูปลักษณะ และสารประกอบ โดยมากปิโตรเลียมนั้นจะนำมาใช้ในการผลิตน้ำมันเชื้อเพลิง เช่น น้ำมันเครื่องยนต์และแก๊ซโซลีน ผลผลิตทั้งสองนั้นเป็นแหล่งพลังงานพื้นฐานของโลกในขณะนี้ปิโตรเลียมเป็นวัตถุดิบสำหรับผลิตภัณฑ์เคมีมากมาย รวมไปถึงสารละลาย ปุ๋ย ยากำจัดศัตรูพืช และพลาสติก


ที่มา : http://www.chevronthailand.com/energy_original.asp

พอลิเมอร์


พอลิเมอร์

พอลิเมอร์ (Polymer) คือ สารประกอบที่มีโมเลกุลขนาดใหญ่ และมีมวลโมเลกุลมากประกอบด้วยหน่วยเล็ก ๆ ของสารที่อาจจะเหมือนกันหรือต่างกันมาเชื่อมต่อกันด้วยพันธะโควาเลนต์

มอนอเมอร์ (Monomer) คือ หน่วยเล็ก ๆ ของสารในพอลิเมอร์ ดังภาพ




ประเภทของพอลิเมอร์ แบ่งตามเกณฑ์ต่าง ๆ ดังนี้

1.แบ่งตามการเกิดเป็นเกณฑ์ เป็น 2 ชนิด คือ

ก.พอลิเมอร์ธรรมชาติ เป็นพอลิเมอร์ที่เกิดขึ้นเองตามธรรมชาติ เช่น โปรตีน แป้ง เซลลูโลส ไกโคเจน กรดนิวคลีอิก และยางธรรมชาติ (พอลีไอโซปรีน)

ข.พอลิเมอร์สังเคราะห์ เป็นพอลิเมอร์ที่เกิดจากการสังเคราะห์เพื่อใช้ประโยชน์ต่าง ๆ เช่น พลาสติก ไนลอน ดาครอน และลูไซต์ เป็นต้



2.แบ่งตามชนิดของมอนอเมอร์ที่เป็นองค์ประกอบ เป็น 2 ชนิด คือ

ก.โฮมอลิเมอร์ (Homopolymer) เป็นพอลิเมอร์ที่ประกอบด้วยมอนอเมอร์ชนิดเดียวกัน เช่น แป้ง(ประกอบด้วยมอนอเมอร์ที่เป็นกลูโคสทั้งหมด) พอลิเอทิลีน PVC (ประกอบด้วยมอนอเมอร์ที่เป็นเอทิลีนทั้งหมด)

ข.เฮเทอโรพอลิเมอร์ (Heteropolymer) เป็นพอลิเมอร์ที่ประกอบด้วยมอนอเมอร์ต่างชนิดกัน เช่น โปรตีน (ประกอบด้วยมอนอเมอร์ที่เป็นกรดอะมิโนต่างชนิดกัน) พอลิเอสเทอร์ พอลิเอไมด์ เป็นต้น

3.แบ่งตามโครงสร้างของพอลิเมอร์ แบ่งออกเป็น 3 แบบ คือ

ก.พอลิเมอร์แบบเส้น (Chain length polymer) เป็นพอลิเมอร์ที่เกิดจากมอนอเมอร์สร้างพันธะต่อกันเป็นสายยาว โซ่พอลิเมอร์เรียงชิดกันมากว่าโครงสร้างแบบอื่น ๆ จึงมีความหนาแน่น และจุดหลอมเหลวสูง มีลักษณะแข็ง ขุ่นเหนียวกว่าโครงสร้างอื่นๆ ตัวอย่าง PVC พอลิสไตรีน พอลิเอทิลีน ดังภาพ

ข.พอลิเมอร์แบบกิ่ง (Branched polymer) เป็นพอลิเมอร์ที่เกิดจากมอนอเมอร์ยึดกันแตกกิ่งก้านสาขา มีทั้งโซ่สั้นและโซ่ยาว กิ่งที่แตกจาก พอลิเมอร์ของโซ่หลัก ทำให้ไม่สามารถจัดเรียงโซ่พอลิเมอร์ให้ชิดกันได้มาก จึงมีความหนาแน่นและจุดหลอมเหลวต่ำยืดหยุ่นได้ ความเหนียวต่ำ โครงสร้างเปลี่ยนรูปได้ง่ายเมื่ออุณหภูมิเพิ่มขึ้น ตัวอย่าง พอลิเอทิลีนชนิดความหนาแน่นต่ำ ดังภาพ

หมายเหตุ พอลิเมอร์บางชนิดเป็นพอลิเมอร์ที่เกิดจากสารอนินทรีย์ เช่น ฟอสฟาซีน ซิลิโคน

การเกิดพอลิเมอร์

พอลิเมอร์เกิดขึ้นจากการเกิดปฏิกิริยาพอลิเมอร์ไรเซชันของมอนอเมอร์

พอลิเมอร์ไรเซชัน (Polymerization) คือ กระบวนการเกิดสารที่มีโมเลกุลขนาดใหญ่ (พอลิเมอร์)จากสารที่มีโมเลกุลเล็ก (มอนอเมอร์)

ปฏิกิริยาพอลิเมอร์ไรเซชัน

1.ปฏิกิริยาพอลิเมอร์ไรเซชันแบบเติม (Addition polymerization reaction) คือปฏิกิริยาพอลิเมอร์ไรเซชันที่เกิดจากมอนอเมอร์ของสารอินทรีย์ชนิดเดียวกันที่มี C กับ C จับกันด้วยพันธะคู่มารวมตัวกันเกิดสารพอลิเมอร์เพียงชนิดเดียวเท่านั้น ดังภาพ


2.ปฏิกิริยาพอลิเมอร์ไรเซชันแบบควบแน่น (Condensation polymerization

reaction) คือปฏิกิริยาพอลิเมอร์ไรเซชันที่เกิดจากมอนอเมอร์ที่มีหมู่ฟังก์ชันมากกว่า 1 หมุ่ ทำปฏิกิริยากันเป็นพอลิเมอร์และสารโมเลกุลเล็ก เช่น น้ำ ก๊าซแอมโมเนีย ก๊าซไฮโดรเจนคลอไรด์ เมทานอล เกิดขึ้นด้วย ดังภาพ




ที่มา : http://thapring.com/Pingpong_web/Polymer.htm

สารชีวโมเลกุล

สารชีวโมเลกุล


สารชีวโมเลกุล หมายถึง สารอินทรีย์ที่พบในสิ่งมีชีวิต เช่น ไขมัน น้ำมัน โปรตีน คาร์โบไฮเดรต กรดนิวคลีอิก จัดเป็นองค์ประกอบพื้นฐานของอาหารที่จำเป็นต่อร่างกาย มีโมเลกุลตั้งแต่ขนาดเล็กจนถึงขนาดใหญ่มาก แต่ละชนิดมีโครงสร้าง สมบัติและปฏิกิริยาที่ต่างกัน ทำให้มีหน้าทีและประโยชน์ต่อร่างกายแตกต่างกันไป

คาร์โบไฮเดรต
คาร์โบไฮเดรต เป็นสารอินทรีย์ที่ประกอบด้วย ธาตุคาร์บอน (C) ไฮโดรเจน (H) และ ออกซิเจน (O) มีโมเลกุลตั้งแต่ขนาดเล็กจนถึงขนาดใหญ่มาก เป็นสารอาหารที่มีความสำคัญและจำเป็นต่อสิ่งมีชีวิต เนื่องจาก เป็นสารอาหารสำคัญที่ให้พลังงาน และทำหน้าที่เป็นองค์ประกอบของเซลล์ต่าง และน้ำไขข้อในสัตว์

คาร์โบไฮเดรตสามารถจำแนกตามสมบัติทางกายภาพและทางเคมี ได้ 2 พวก คือ
1.พวกที่เป็นน้ำตาล
2.พวกที่ไม่ใช่น้ำตาล (แป้ง และเซลลูโลส)
คาร์โบไฮเดรตสามารถจำแนกตามโมเลกุล สามารถแบ่งออกได้เป็น 3 ประเภท คือ
1.มอนอแซ็กคาไรด์ (Monosaccharide) 2. ไดแซ็กคาไรด์ (Disaccharide) 3. พอลิแซ็กคาไรด์ (Polysaccharide)


ไขมัน
ไขมัน ประกอบด้วย คาร์บอน ไฮโดรเจน และออกซิเจน โมเลกุลของไขมัน ประกอบด้วยกรีเซอรีน 1 โมเลกุล และกรดไขมัน 3 โมเลกุล ซึ่งอาจเป็นกรดไขมันชนิดเดียวกันหรือต่างกันได้ ไขมันมีหลายชนิด แล้วแต่ชนิดของกรดไขมันที่เป็นส่วนประกอบ ไขมันในอาหาร ประกอบด้วย ไตรกลีเซอไรด์ (Triglycerides) เป็ยส่วนใหญ่ และ โคเลสเตอรอล (Cholesterol) เป็นส่วนน้อย โคเลสเตอรอลเป็นไขมันที่ไม่จัดเป็นสารอาหาร เนื่องจากในร่างกายสร้าง ได้เองและเพียงพอ ไม่มีในพืช มีแต่ในสัตว์ ได้แก่ สมอง ไข่แดง หอย กุ้ง ปู เนย เครื่องในสัตว์
ไตรกลีเซอไรด์เป็นไขมันที่ เกิดจากปฏิกิริยาเคมีระหว่างกรดไขมันกับกลีเซอรอล เป็นส่วนใหญ่ของไขมันที่อยู่ในอาหาร และเป็นองค์ประกอบถึง 99% ในน้ำมันพืช เป็นแหล่งพลังงาน ที่สำคัญ
• ไขมันทั่วไป เกิดจากไขมันกับแอลลกอฮอล์ ในโมเลกุลไขมันจะประกอบด้วย กลีเซอรอล และกรดไขมัน แบ่งออกเป็นสามชนิดคือ
• ไขมัน
• น้ำมัน
• ขี้ผึ้ง
• ไขมันเชิงประกอบ
ไขมันเชิงประกอบเป็นไขมันที่สารอื่นอยู่ด้วยนอกเหนือจาก คาร์บอน ไฮโดรเจนและออกซิเจน PO4 , N, S เช่นฟอสฟอลิปิดส่วนใหญ่ฟอสฟอลิปิดจะเป็นองค์ประกอบหลักของเยื่อหุ้มเซลต่างๆ
• ไขมันอื่นๆ ได้จาก 2 พวก แรกทำปฏิกิริยากัน

กรดไขมัน
กรดไขมัน เป็นกรดที่เกิดในธรรมชาติจากการไฮโดรลิซิสไตรกลีเซอไรด์ กรดไขมันที่พบโดยทั่วไปจะมีจำนวนของคาร์บอนเป็นเลขคู่ ที่พบมากคือ 16 หรือ 18 อะตอม กรดไขมันแบ่งออกเป็น
• กรดไขมันอิ่มตัว (saturated fatty acids)
• กรดไขมันไม่อิ่มตัว (unsaturated fatty acids)

โปรตีน
โปรตีน คือ สารชีวโมเลกุลประเภทสารอินทรีย์ที่ประกอบด้วยธาตุ C, H, O, N เป็นองค์ประกอบสำคัญนอกจากนั้นยังมีธาตุอื่น ๆ เช่น S, P, Fe, Zn ทั้งนี้ขึ้นอยู่กับชนิดของโปรตีน
องค์ประกอบย่อยของโปรตีนเรียกว่ากรดอะ มิโน โปรตีนและเพปไทด์ ประกอบด้วยกรดอะมิโนเรียงตัวกันเป็นสายยาวโดยมีพันธะเพปไทด์เป็นพันธะเชื่อม โยง พันธะเพปไทด์ เป็นพันธะเอไมด์ ที่เกิดจากการรวมตัวกันของหมู่คาร์บอกซิลของกรดอะมิโนตัวที่หนึ่งกับหมู่อะ มิโนของกรดอะมิโนตัวถัดไปและมีการสูญเสียน้ำหนึ่งโมเลกุล

กรดนิวคลีอิก
กรดนิวคลีอิก ( nucleic acid ) เป็นสารชีวโมเลกุลที่มีขนาดใหญ่ทำหน้าที่เก็บและถ่ายทอดข้อมูลทางพันธุ์กรรม ของสิ่งมีชีวิต จากรุ่นหนึ่งไปยังรุ่นต่อไปให้แสดงลักษณะต่าง ๆ ของสิ่งมีชีวิต นอกจากนี้ยังทำหน้าที่ควบคุมการเจริญเติบโตและกระบวนการต่าง ๆ ของสิ่งมีชีวิต กรดนิวคลีอิกมี 2 ชนิดคือ DNA ( deoxyribonucleic acid ) และRNA ( ribonucleic acid ) โมเลกุลของกรดนิวคลีอิก ประกอบด้วยหน่วยย่อยที่เรียกว่า นิวคลีโอไทด์ ( nucleotide ) โมเลกุล DNA ประกอบด้วยพอลินิวคลีโอไทด์ 2 สายเรียงตัวสลับทิศทางกันและมีส่วนของเบสเชื่อมต่อกันด้วยพันธะไฮโดรเจน โมเลกุลบิดเป็นเกลียวคล้ายบันไดเวียน ส่วนRNA เป็นพอลินิวคลีอิกเพียงสายเดียว DNA และRNA มีน้ำตาลที่เป็นองค์ประกอบต่างกันใน DNA เป็นน้ำตาลดีออกซีไรโบส ( deoxyribose sugar ) ส่วนในRNA เป็นน้ำตาลไรโบส (ribose sugar) เบสที่พบใน DNA และ RNA มีบางชนิดที่เหมือนกัน และบางชนิดต่างกัน

เอนไซม์
เอนไซม์เป็นโปรตีนชนิดหนึ่ง แต่เป็นโปรตีนที่ทำหน้าที่เชิงชีวภาพเฉพาะ ซึ่งทำหน้าที่เป็นตัวเร่งปฏิกิริยาในสิ่งมีชีวิต


ที่มา :http://blog.spu.ac.th/FutureCareer/2008/01/09/entry-24

ปฏิกิริยาเคมี

ปฏิกิริยาเคมี

ปฏิกิริยาเคมี (Chemical reaction) คือกระบวนการที่เกิดจากการที่สารเคมีเกิด การเปลี่ยนแปลงแล้วส่งผลให้เกิดสารใหม่ขึ้นมาซึ่งมีคุณสมบัติเปลี่ยนไปจาก เดิม การเกิดปฏิกิริยาเคมีจำเป็นต้องมีสารเคมีตั้งต้น 2 ตัวขึ้นไป (เรียกสารเคมีตั้งต้นเหล่านี้ว่า "สารตั้งต้น" หรือ reactant)ทำปฏิกิริยาต่อกัน และทำให้เกิดการเปลี่ยนแปลงในคุณสมบัติทางเคมี ซึ่งก่อตัวขึ้นมาเป็นสารใหม่ที่เรียกว่า "ผลิตภัณฑ์" (product) ในที่สุด สารผลิตภัณฑ์บางตัวอาจมีคุณสมบัติทางเคมีที่ต่างจากสารตั้งต้นเพียงเล็กน้อย แต่ในขณะเดียวกันสารผลิตภัณฑ์บางตัวอาจจะแตกต่างจากสารตั้งต้นของมันโดยสิ้น เชิง แต่เดิมแล้ว คำจำกัดความของปฏิกิริยาเคมีจะเจาะจงไปเฉพาะที่การเคลื่อนที่ของประจุอิเล็กตรอน ซึ่งก่อให้เกิดการสร้างและสลายของพันธะเคมีเท่านั้น แม้ว่าแนวคิดทั่วไปของปฏิกิริยาเคมี โดยเฉพาะในเรื่องของสมการเคมี จะรวมไปถึงการเปลี่ยนสภาพของอนุภาคธาตุ (เป็นที่รู้จักกันในนามของไดอะแกรมฟายน์แมน)และยังรวมไปถึงปฏิกิริยานิวเคลียร์อีกด้วย แต่ถ้ายึดตามคำจำกัดความเดิมของปฏิกิริยาเคมี จะมีปฏิกิริยาเพียง 2 ชนิดคือปฏิกิริยารีดอกซ์ และปฏิกิริยากรด-เบส เท่านั้น โดยปฏิกิริยารีดอกซ์นั้นเกี่ยวกับการเคลื่อนที่ของประจุอิเล็กตรอนเดี่ยว และปฏิกิริยากรด-เบส เกี่ยวกับคู่อิเล็กตรอนในการสังเคราะห์สารเคมี ปฏิกิริยาเคมีต่างๆ จะถูกนำมาผสมผสานกันเพื่อให้เกิดสารผลิตภัณฑ์ที่ต้องการ ในสาขาวิชาชีวเคมี เป็นที่ทราบกันว่า ปฏิกิริยาเคมีหลายๆ ต่อจึงจะก่อให้เกิดแนวทางการเปลี่ยนแปลงปฏิกิริยาอินทรีย์เคมีและปฏิกิริยาอนินทรีย์เคมี (metabolic pathway) ขึ้นมาเนื่องจากการที่จะสังเคราะห์ผลิตภัณฑ์โดยตรงนั้นไม่สามารถทำได้ในตัว เซลล์ในคราวเดียวเนื่องจากพลังงานในเซลล์นั้นไม่พอต่อการที่จะสังเคราะห์ ปฏิกิริยาเคมียังสามารถแบ่งได้เป็น

ชนิดของปฏิกิริยาเคมี

ปฏิกิริยาเคมีนั้นสามารถจำแนกได้เป็นหลายชนิดและประเภท โดยหลักในการจำแนกนั้นขึ้นอยู่กับหลักเกณฑ์ที่จะนำไปใช้ในการจัดกลุ่มจำแนก แต่ส่วนมากแล้วจะแบ่งได้เป็น 5 ชนิดใหญ่ๆ ได้แก่
  • ปฏิกิริยาการรวมตัว หรือการสังเคราะห์ (Combination reaction หรือ synthesis) คือการที่สารบริสุทธิ์หรือสารประกอบทางเคมี รวมสารเข้าด้วยกันและก่อให้เกิดสารผลิตภัณฑ์ตัวใหม่ที่ซับซ้อนกว่า
โครงสร้าง: A+Z → AZ
ตัวอย่าง: N2 + 3H2 → 2NH3
  • ปฏิกิริยาการสลายตัว หรือการวิเคราะห์ (Decomposition reaction หรือ analysis) คือการที่สารประกอบสลายตัวมาเป็นสารประกอบหรือสารบริสุทธิ์ที่เล็กกว่า
โครงสร้าง: AZ → A+Z
ตัวอย่าง: 2H2O → 2H2 + O2
  • ปฏิกิริยาการแทนที่เชิงเดี่ยว (Single displacement reaction หรือ substitution) คือการที่สารบริสุทธิ์ถูกแทนที่ด้วยสารประกอบ
  • ปฏิกิริยาการแทนที่เชิงคู่ (Double displacement reaction)
  • ปฏิกิริยาสะเทินบก (Combustion)
ที่มา: http://th.wikipedia.org/wiki/ปฏิกิริยาเคมี

พันธะ

พันธะเคมี

พันธะเคมี
คือแรงยึดเหนี่ยวระหว่างอะตอมภายในโมเลกุลหรือระหว่างโมเลกุลด้วยกันเอง พันธะเคมีสามารถแบ่งได้หลายประเภท เช่น

พันธะโควาเลนต์

พันธะโควาเลนต์ (อังกฤษ:Covalent bond) คือพันธะเคมี (chemical bond) ภายในโมเลกุลชนิดหนึ่ง พันธะโควาเลนต์เกิดจากอะตอมสองอะตอมใช้วาเลนซ์อิเล็กตรอนหนึ่งคู่หรือมากกว่าร่วมกัน ทำให้เกิดแรงดึงดูดที่รวมอะตอมเป็นโมเลกุลขึ้น อะตอมมักสร้างพันธะโควาเลนต์เพื่อเติมวงโคจรอิเล็กตรอนรอบนอก สุดของตัวเองให้เต็ม ดังนั้นอะตอมที่สร้างพันธะโควาเลนต์จึงมักมีวาเลนซ์อิเล็กตรอนอยู่มาก เช่น ธาตุหมู่ VI และหมู่ VII เป็นต้น พันธะโควาเลนต์แข็งแรงกว่าพันธะไฮโดรเจนและมีความแข็งแรงพอๆ กับพันธะไอออนิกพันธะโควาเลนต์มักเกิดขึ้นระหว่างอะตอมที่มีค่าอิเล็กโตรเนกาทิวิตีใกล้เคียงกัน ธาตุอโลหะมีแนวโน้มที่จะสร้างพันธะโควาเลนต์มากกว่าธาตุโลหะซึ่งมักสร้างพันธะโลหะ เนื่องจากอิเล็กตรอนของธาตุโลหะสามารถเคลื่อนอย่างอิสระ ในทางกลับกัน อิเล็กตรอนของธาตุอโลหะไม่สามารถเคลื่อนที่ได้อย่างอิสระนัก การใช้อิเล็กตรอนร่วมกันจึงเป็นทางเลือกเดียวในการสร้างพันธะกับธาตุที่มี สมบัติคล้ายๆ กัน อย่างไรก็ดี พันธะโควาเลนต์ที่มีโลหะนั้นมีความสำคัญอย่างยิ่งในการเร่งปฏิกิริยา ตัวอย่างเช่น พันธะโควาเลนต์ระหว่างสารอินทรีย์กับโลหะเป็นเครื่องมือสำคัญของกระบวนการสร้างพอลิเมอร์หลายๆ กระบวนการ เป็นต้น


ในโมเลกุลของมีเทนอะตอมของธาตุไฮโดรเจนสี่อะตอม

สร้างพันธะโควาเลนต์กับอะตอมของธาตุคาร์บอน


พันธะไฮโดรเจน

(อังกฤษ: Hydrogen bond) เป็นแรงยึดเหนี่ยวระหว่างโมเลกุลโควาเลนต์ ที่มีขั้วรุนแรง มีความแข็งแรงมากกกว่าแรงระหว่างโมเลกุลอื่นๆ แต่แรงยึดเหนี่ยวนี้มีความแข็งแรงน้อยกว่าพันธะโควาเลนต์และพันธะไอออนิกอยู่มาก นอกจากนี้ ในโมเลกุลขนาดใหญ่ เช่น โปรตีน หรือ กรดนิวคลีอิก ก็อาจมีพันธะไฮโดรเจนภายในโมเลกุลได้

เหตุที่เรียกแรงยึดเหนี่ยวนี้ว่าพันธะไฮโดรเจน เพราะว่าโมเลกุลที่จะเกิดพันธะไฮโดรเจนนั้น จะมีธาตุไฮโดรเจนที่ เกิดพันธะโควาเลนต์กับธาตุที่มีอิเล็กโตรเนกาทิวิตีสูง ได้แก่ ไนโตรเจน ออกซิเจน และฟลูออรีน เกิดแรงดึงดูดกับธาตุเหล่านี้ของอีกโมเลกุลหนึ่ง โดยธาตุเหล่านี้จะดึงดูดกลุ่มหมอกอิเล็กตรอน มาอยู่ที่อะตอมเหล่านั้น จนทำให้เกิดสภาพขั้วบวกที่อะตอมของไฮโดรเจน และดึงดูดกับอิเล็กตรอนคู่โดดเดี่ยวของอีกโมเลกุลหนึ่งอย่างรุนแรงเกิดพันธะไฮโดรเจนขึ้น




พันธะไอออน

พันธะไอออนิค (พันธะไอออน) (อังกฤษ: ionic bond) เกิดจากที่อะตอมหรือกลุ่มของอะตอมสร้างพันธะกันโดยที่อะตอมหรือกลุ่มของอะตอมให้อิเล็กตรอนกับ อะตอมหรือกลุ่มของอะตอม ทำให้กลายเป็นประจุบวก ในขณะที่อะตอมหรือกลุ่มของอะตอมที่ได้รับอิเล็กตรอนนั้นกลายเป็นประจุลบ เนื่องจากทั้งสองกลุ่มมีประจุตรงกันข้ามกันจะดึงดูดกัน ทำให้เกิดพันธะไอออน โดยทั่วไปพันธะชนิดนี้มักเกิดขึ้นระหว่างโลหะกับอโลหะ โดยอะตอมที่ให้อิเล็ก

ตรอนมักเป็นโลหะ ทำให้โลหะนั้นมีประจุบวก และอะตอมที่รับอิเล็กตรอนมักเป็นอโลหะ จึงมีประจุลบ ไอออนที่พันธะไอออนมีความแข็งแรงมากกว่าพันธะไฮโดรเจน แต่แข็งแรงพอ ๆ กับพันธะโคเวเลนต์


พันธะโลหะ

พันธะโลหะ (Metallic bonding) เป็นพันธะภายในโลหะซึ่งเกี่ยวข้องกับ การเคลื่อนย้าย อิเล็กตรอน อิสระระหว่างแลตทิซของอะตอมโลหะ ดังนั้นพันธะโลหะจึงอาจเปรียบได้กับเกลือที่หลอมเหลว อะตอมของโลหะมีอิเล็กตรอนพิเศษเฉพาะในวงโคจรชั้นนอกของมันเทียบกับคาบ (period) หรือระดับพลังงานของพวกมัน อิเล็กตรอนที่เคลื่อนย้ายเหล่านี้เปรียบได้กับทะเลอิเล็กตรอน(Sea of Electrons) ล้อมรอบแลตทิชขนาดใหญ่ของไอออนบวก

พันธะโลหะเทียบได้กับพันธะโควาเลนต์ที่เป็น นอน-โพลาร์ ที่จะไม่มีในธาตุโลหะบริสุทธ์ หรือมีน้อยมากในโลหะผสม ความแตกต่าง อิเล็กโตรเนกาทิวิตีระหว่าง อะตอม ซึ่งมีส่วนในปฏิกิริยาพันธะ และอิเล็กตรอนที่เกี่ยวข้องในปฏิกิริยาจะเคลื่อนย้ายข้ามระหว่างโครงสร้าง ผลึกของโลหะ พันธะโลหะเขียนสูตรทางเคมีไม่ได้ เพราะไม่ทราบจำนวนอะตอมที่แท้จริง อาจจะมีเป็นล้านๆ อะตอมก็ได้ พันธะโลหะจะมีความสำคัญต่อคุณสมบัติทางฟิสิกส์หลายอย่างของโลหะเช่น

  • ความแข็งแรง
  • ตีแผ่เป็นแผ่นได้(malleability)
  • ดึงเป็นเส้นได้ (ductility)
  • นำความร้อนไดดี
  • นำไฟฟ้าได้ดีและนำได้ทุกทิศทาง
  • เนื้อเป็นเงา (luster)


วันอังคารที่ 14 กรกฎาคม พ.ศ. 2552

โครงสร้างอะตอม

จอห์น ดอลตัน เป็นคนแรกที่เสนอแนวคิดเกี่ยวกับอะตอม สรุปว่า

1.สารประกอบด้วยอนุภาคขนาดเล็ก เรียกว่า อะตอม แบ่งแยกไม่ได้ และสร้างขึ้นหรือทำลายให้สูญหายไปไม่ได้
2.อะตอมของธาตุชนิดเดียวกัน จะมีมวลเท่ากัน มีสมบัติเหมือนกันแต่จะแตกต่างจากอะตอมของธาตุอื่น ๆ



3.อะตอมของธาตุสองชนิดอาจรวมตัวกันด้วยอัตราส่วนต่าง ๆ กัน เกิดเป็นสารประกอบได้หลายชนิด2. ทอมสัน ทำการทดลองเกี่ยวกับการนำไฟฟ้าของก๊าซในหลอดรังสีแคโทด พบว่าไม่ว่าจะใช้ก๊าซใดบรรจุในหลอดหรือใช้โลหะใดเป็นแคโทด จะได้รังสีที่ประกอบด้วยอนุภาคที่มีประจุลบ พุ่งมาที่ฉากเรืองแสงเหมือนเดิม เมื่อคำนวณหาอัตราส่วนของประจุต่อมวล (e/m)ของอนุภาค จะได้ค่าคงที่ทุกครั้งเท่ากับ 1.76 x 108 คูลอมบ์ต่อกรัม สรุปว่า อะตอมทุกชนิดมีอนุภาคที่มีประจุลบเป็นองค์ประกอบ เรียกว่า อิเล็กตรอน


รูป 2.3 หลอดรังสีแคโทดที่มีขั้วไฟฟ้าในหลอดเพิ่มอีกสองขั้วเพื่อทำให้เกิดสนามไฟฟ้า 3. โกลดชไตน์ ดัดแปลงหลอดรังสีแคโทด เมื่อเปลี่ยนชนิดของก๊าซ พบว่า อนุภาคที่มีประจะบวกมีอัตราส่วนของประจุต่อมวลไม่คงที่ ถ้าใช้ก๊าซไฮโดรเจน จะได้อนุภาคบวกมีประจุเท่ากับประจุของอิเล็กตรอนจึงเรียกอนุภาคบวกว่า โปรตอน4. มิลลิแกน ทำการทดลองหาค่าประจุของอิเล็กตรอน เท่ากับ 1.60 x 10-19 คูลอมบ์ และเมื่อนำไปคำนวณหามวล ของอิเล็กตรอน จะได้เท่ากับ 9.11 x 10-28 กรัม5. รัทเทอร์ฟอร์ด, ไกเกอร์ และมาร์สเดน ยิงอนุภาคแอลฟาไปยังแผ่นทองคำบาง ๆ พบว่า อนุภาคส่วนใหญ่จะวิ่งเป็น เส้นตรงผ่านแผ่นทองคำ นาน ๆ ครั้งจะเบนไปจากแนวเส้นตรง และน้อยครั้งมากที่อนุภาคจะสะท้อนกลับมากระทบ
ฉากบริเวณหน้าแผ่นทองคำ6. เลขอะตอม คือ ตัวเลขที่แสดงจำนวนโปรตอน7. เลขมวล คือ ผลรวมของจำนวนโปรตอนและนิวตรอน8. ไอโซโทป คือ อะตอมต่าง ๆ ของธาตุเดียวกันที่มีเลขมวลต่าง ๆ เช่น 11H, 21H และ 31H9. สัญลักษณ์นิวเคลียร์ วิธีเขียน เลขอะตอมไว้มุมล่างซ้าย และเลขมวลไว้มุมบนซ้ายของสัญลักษณ์ เช่น 23 11 Na10. การจัดอิเล็กตรอนในอะตอม
วิธีการใช้ในการหาข้อมูลเกี่ยวกับตำแหน่งของอิเล็กตรอนรอบนิวเคลียส คือ การศึกษาสเปกตรัมของสารหรือธาตุแสงเป็นคลื่นแม่เหล็กไฟฟ้า แสงที่มองเห็นได้มีความยาวคลื่น 400 - 700 นาโนเมตร แสงสีต่าง ๆ ในแถบสเปกตรัมของแสงได้แก่ ม่วง น้ำเงิน เขียว เหลือง ส้ม แดง
แสงสีม่วง มีความยาวคลื่นสั้นที่สุด แต่มีความถี่สูงที่สุด และมีพลังงานสูงสุด
แสงสีแดง มีความยาวคลื่นมากที่สุด แต่มีความถี่ต่ำที่สุด และมีพลังงานต่ำสุด
มักซ์ พลังค์ สรุปว่า พลังงานของคลื่นแม่เหล็กไฟฟ้าจะเป็นสัดส่วนโดยตรงกับความถี่ของคลื่นนั้น
E = พลังงาน จูล (J)
h = ค่าคงที่ของพลังค์ มีค่า 6.625 x 10-34 จูลวินาที (Js)
= ความถี่ของคลื่นแม่เหล็กไฟฟ้า (Hz)
C = ความเร็วของคลื่นแม่เหล็กไฟฟ้าในสูญญากาศ = 3.0 x 108 m/s
= ความยาวคลื่น (m) (1 นาโนเมตร เท่ากับ 10-9 เมตร)





สเปกโตสโคป เป็นเครื่องมือสำหรับแยกสเปกตรัมของแสงขาว และตรวจเส้นสเปกตรัมของธาตุที่ถูกเผา การทดลองใช้ลวดนิโครมจุ่มลงในกรดไฮโดรลอริกเข้มข้น (HCI) แตะสารประกอบที่ต้องการทดสอบ นำไปเผาบนเปลวไฟ สังเกตสีของเปลวไฟ และใช้สเปกโตสโคปสังเกตสีของเส้นสเปกตรัม
1.สีของเปลวไฟ หรือเส้นสเปกตรัม เกิดจากส่วนที่เป็นโลหะ (ion +) ในสารประกอบชนิดนั้น ๆ
2.ธาตุแต่ละชนิด มีเส้นสเปกตรัมเป็นลักษณะเฉพาะตัวไม่ซ้ำกัน ลักษณะของเส้นสเปกตรัมจึงเป็นสมบัติเฉพาะตัว
ประการหนึ่งของธาตุ เส้นสีเขียวที่เห็นจากแสงไฟฟลูออเรสเซนต์ เกิดจาก ไอปรอท 11. การศึกษาเรื่องสเปกตรัมของสารหรือของธาตุ สรุปได้ว่า
1.เมื่ออิเล็กตรอนได้รับพลังงาน จึงขึ้นไปอยู่ในระดับพลังงานที่สูงขึ้น ทำให้อะตอมไม่เสถียร อิเล็กตรอนจึงคาย พลังงานเท่ากับพลังงานที่ได้รับเข้าไป พลังงานส่วนใหญ่ที่คายออกอยู่ในรูปของคลื่นแม่เหล็กไฟฟ้า ปรากฎเป็นเส้น สเปกตรัม
2.การเปลี่ยนระดับพลังงานของอิเล็กตรอน อาจมีการเปลี่ยนข้ามขั้นได้
3.อิเล็กตรอนในระดับพลังงานต่ำจะอยู่ใกล้นิวเคลียส
4.ระดับพลังงานต่ำอยู่ห่างกันมากกว่าระดับพลังงานสูง ระดับพลังงานยิ่งสูงขึ้นจะยิ่งอยู่ชิดกันมากขึ้น12. นีลส์ โบร์ สร้างแบบจำลองว่า อิเล็กตรอนในอะตอมวิ่งอยู่รอบนิวเคลียสเป็นชั้น ๆ หรือเป็นระดับพลังงานมีค่า
พลังงานเฉพาะคล้าย ๆ กับวงโคจรของดาวเคราะห์รอบดวงอาทิตย์ ซึ่งแบบจำลองนี้ใช้ได้ดีกับอะตอมขนาดเล็กที่มี
อิเล็กตรอนเดียว เช่น ไฮโดรเจนเท่านั้น





13. พลังงานไอออไนเซชัน (IE) คือ พลังงานปริมาณน้อยที่สุดที่ทำให้อิเล็กตรอนหลุดออกจากอะตอมในสถานะก๊าซ
Mg(g) + IE1 Mg+(g) + e-
Mg+(g) + IE2 Mg2(g) + e-
พลังงานไอออไนเซชันลำดับที่หนึ่ง ไม่ว่าจะเป็นของธาตุใดก็ตาม ล้วนมีค่าต่ำสุดเมื่อเทียบกับพลังงานไอออไนเซชัน ลำดับอื่น ๆ ของธาตุเดียวกัน เพราะอิเล็กตรอนที่หลุดออกไปตัวแรกได้รับแรงดึงดูดจากนิวเคลียสน้อยที่สุด
ค่าพลังงานไอออไนเซชันใช้เป็นเกณฑ์ในการจัดกลุ่มอิเล็กตรอนได้คำถาม กำหนดปฏิกิริยาต่อไปนี้
ก. Zn(s) Zn(g) ดูดพลังงาน 130 kj/mol
ข. Zn(s) Zn2+(aq) + 2e- ดูดพลังงาน 737 kj/mol
ค. Zn2+(g) Zn2+(aq) ดูดพลังงาน 2046 kj/mol
ผลรวมของค่าพลังงานไอออไนเซชันลำดับที่หนึ่ง และที่สองของสังกะสีเป็นเท่าใดในหน่วย kj/mol
1) 607 2) 1179 3) 1439 *4) 265314. จำนวนอิเล็กตรอนที่มีได้มากที่สุดในแต่ละระดับพลังงาน = 2n2
อิเล็กตรอนในระดับพลังงานสูงที่สุดของแต่ละธาตุ เรียกว่า เวเลนซ์อิเล็กตรอน
3919K มีการจัดอิเล็กตรอน เป็น 2, 8, 8, 1 (หมู่ 1 A คาบ 4)15. แบบจำลองอะตอมแบบกลุ่มหมอก สรุปได้ว่า
1. การเคลื่อนที่ของอิเล็กตรอนไม่มีทิศทางแน่นอน บอกได้เพียงโอกาสที่จะพบอิเล็กตรอน ณ ตำแหน่งต่าง ๆ เท่านั้น
2. โอกาสที่จะพบอิเล็กตรอนในแต่ละระดับพลังงานไม่เหมือนกัน ขึ้นกับจำนวนอิเล็กตรอนและระดับพลังงานของ อิเล็กตรอนนั้น
3. อิเล็กตรอนที่มีพลังงานต่ำอยู่ในบริเวณใกล้นิวเคลียสมากกว่าอิเล็กตรอนที่มีพลังงานสูง




ที่มา : http://www.web.ku.ac.th/schoolnet/snet5/topic5/atom.htm




ตารางธาตุ




ที่มา : www.ptable.com/?lang=th